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Abstract-Three displacement functions are introduced to represent each mechanical displacement
according to the three-dimensional theory. After expanding these functions and the electric potential
with orthogonal series, the free vibration equation of piezoelectric cylindrical shells satisfying SS3
edge conditions can be obtained. The equation was solved by utilizing Bessel functions with complex
arguments. The effects ofcompressible fluid on shells are considered and some new phenomena which
are exclusive for piezoelectric cylindrical shells are reported. Results of empty infinite piezoelectric
cylindrical shells are compared to those presented in relative references. Some lowest frequencies
that were missed by Paul and Venkatesan [PauL H. S. and Venkatesan. M. (1987). Vibrations of
hollow circular cylinder of piezoelectric ceramics. Journal of the Acoustic Society of America 82,
852-856] were discovered. r 1997 Elsevier Science Ltd.

I. !]\;TRODUCTION

Because of the particular mechanical-electrical coupling effect, piezoelectric phenomenon
has always attracted many attentions in both theoretical and engineering science since the
Curie brothers' studies initiated in 1880. However, a great number of problems of piezo­
electric materials that had been solved up to the 1950s belongs to static problems because
of its complex coupling effect between mechanics and electricity. Dokmeci (1980) in his
review article, stressed the importance on wave and vibration in piezoelectric crystal bars,
rings, disks, laminae and in particular, plates and shells. Many investigations on dynamic
responses of various piezoelectric structures have been done in these areas by using various
shell and plate theories.

Vibrations of piezoelectric materials have attracted many attentions since the fifties.
Haskins and Walsh (1956) first studied the axisymmetric free vibrations of radially polarized
piezoelectric cylindrical shells with transverse isotropy by adopting a classical shell theory,
though some mechanical quantities could not be satisfied exactly during the separation of
basic equations; in the case of very small thickness of the shell, their results were coincident
with the experiment well. The plate and shell theories suggested by Drumheller and Kalnins
(1969) did satisfy exactly the basic equations both of mechanics and electricity; however,
iterative technology should be used to solve relative equations because they were still
coupled. Tzou and Zhong (1994) recently developed a linear shell theory, which can be
used to derive the approximate controlling equations of vibrations of thin or moderately
thick piezoelectric shells, but numerical example was not given. Babaev and Savin (1988),
based on Kirchhoff-Love hypotheses, solved the nonsteady hydroelasticity of coaxial pie­
zoceramic cylindrical shells during electrical excitation. Babaev el at, (1990) studied the
transient vibrations of thin-walled, radially polarized, piezoelectric cylindrical shells coupled
with fluid.

Earlier investigations by the methods of three dimensional theory concentrated on the
axisymmetric and radial vibrations of cylinders and thin circular rings, such as Stephenson
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(1956a, 1956b) and Adelman ef al. (1974, 1975). Paul (1966) first derived the frequency
equation of piezoelectric cylindrical shell without giving numerical results. Paul and Yen­
katesan (1987) employed Paul's method [Paul (1966)] to obtain the natural frequencies of
infinite piezoelectric cylindrical shells with either shorted electroded or free lateral surfaces;
however, some frequencies were missed in their calculation. Studies on finite cylinders or
cylindrical shells are much less. Paul and Natarajan (1994a, 1994b) investigated the flexural
and axisymmetric free vibrations of finite free piezoelectric cylindrical shells with free edges
(17,. = T,c = Toc = °at both edges, here (Jr' Trc and T,·iI are stress components in circular
coordinates), but their displacement functions could not satisfy the edge conditions com­
pletely and therefore approximation was inevitably introduced. Free vibration of finite
fluid-filled piezoelectric cylindrical shells has not been found by authors, though similar
research on transversely isotropic cylindrical shell has been made by Jain (1974), where
shell theory was employed.

In this paper, three displacement functions are first introduced to represent the com­
ponents of displacement [Ding Haojiang ef al. (1996)]. Then the displacement functions
and the electric potential are expanded in terms of orthogonal series both in {} and z
directions and the SS3 edge conditions are automatically satisfied (Vc = T r , = Toc = q> = 0,
here Cc is the displacement component in z direction and q> is the electric potential).
Substituting these expressions into the basic equations of piezoelectricity, the controlled
equations of free vibration problems are obtained in terms of displacement functions and
electric potential. One is a Bessel equation only of displacement function 1jJ, the other is a
coupled second-order ordinary differential equation set of displacement functions G and
Wand electric potential q>. Although the Bessel function with complex argument may be
accounted in the solving procedure, our investigation reveals that real frequency still exists.
Considering the effect of filled compressible fluid, the variations of the smallest frequency
versus wave number and thickness are studied.

2. SIMPLIFICATION OF BASIC EQUATIONS

In circular coordinates (r, B, z), the mechanical displacements of transversely isotropic
piezoelectric materials can be expressed by three displacement functions as follows [Ding
Haojiang ef al. (1996)]

--

cr

Lr = W

?1jJ I?G

?r r Ni
(I)

where V" Vii and Cc are components of displacement in r, Band z directions, respectively,
1jJ, G and Ware displacement functions that satisfy the following equations. respectively:

(2)

In the above equations. C'j are elastic constants of which only five are independent, i.e.
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C66 = (CII - cI2)/2; Cij' £,/, P and cp are piezoelectric constants, dielectric constants, density
and electrical potential, respectively, and

The SS3 edge conditions [Hoff and Soong (1965)] eire

Uc = T,C = TOe = °= cp (.:: = 0, L)

(3)

(4)

where L is the length of piezoelectric cylindrical shells. The stress components and electrical
displacements expressed by mechanical displacements and electrical potential can be found
in Paul (1966).

Displacement functions can be taken in the following forms:

j
ljJ(r, 0,.::, t) = ljJ(r) cos(mn~) sin(nO)' c,e"

G(r, e,.::, t) = G(r) cos(mn~)cos(ne) . e">[

W(r. IJ . .::, t) = [W(r)/ R] sin(mn~) cos(ne) . c""

cp(r, 0,.::, t) = [c44CP(r)/(R' cd] sin(mn~)cos(nlJ) . ei'"

(5)

where ~ = .::/L. Substituting eqn (5) into eqn (2) and adopting the non-dimensional
procedure, one obtains

[

(II V~ +0 2 -r,:,

_ (:13 + ~)rl"V~ 2

(LI;+L31)rIllV2

(6)

(7)

where V~ = (1 /~)(dld~)(~dd(,) _n 2
;( and the non-dimensional parameters are introduced

as

~ = r,R; rill = f11nR/L 0 = w/w,: (I), = V2 R; R = (a+h) 2

where a and h are inner and outer radii of the cylindrical shell, respectively.
Equation (6) is a Bessel equation, one can write out its solution directly

(9)

where k~ = (02
- r~,) /C66 ; J" ( . ) and Y" ( . ) are the nth order Bessel functions of the first and

second kind, respectively, A4 , D4 are arbitrary constants.
Suppose that one set of solution to eqn (7) be

G] fAI

WI = In(k~) 1B\

I,d
(10)

where A, Band C are arbitrary constants. The determinant equation can be obtained by
substituting the above equation into eqn (7)
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(ell + I)rnk' k C _Oc +C11r,~, clskc+r;" = O.

(cI,+c3I)rm kC clskc+rl/, -k,/F-ki/r;"i

(II)

Three roots of kC(kT, k~ and k~) can be obtained from eqn (II), among which at least one
must be real, denoting it as k~. In general, one appreciates three distinct roots. In addition,
zero roots correspond to spurious frequencies that should be neglected here and other
methods should be employed when equivalent roots emerge in eqn (II).

Let Re[k,] ? 0, one can obtain a set of solution to eqn (7)

where A" B, and C satisfy

and d, and f are determined by

(/JI

1 \ A'I
') J (k") B I,
i..... II, I":', 'I r'
'~I I·C.

{~': d,A,
C, - .f,A,

(12)

(13)

(14)

Obviously, the other independent set of solution to eqn (7) is

and

iG,

! ;,
I (() c-

1 ID,
= I YI/(k,~)\, E,

i= I I
,F,

{
E,: d,D,.
F, -f,D,

(15)

(16)

The complete solution to be eqn (7) can be obtained by combining expressions (12) and
(15)

G GI G2
,

[ .I,,(k,cj Y"(k,() ]
W WI + Wc = JI d,J,,(k,~) d, YI/(k,~) {~J (17)

(/J (/JI (/Jc f,J,,(k,cJ f, YI/(k,s)

Thus, the exact solution to displacement functions and electric potential is obtained. The
frequency equation can be derived by substituting expressions (9) and (17) into constitutive
equations and considering the boundary conditions. The non-dimensional expressions of
stress components are
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(jr = (I!RC){- ±[cllk; P;'(ki~) +clck,P;(ki~)i~- (ClcnC (+CI3rmdi+e31 rmf,)P,(ki~)]
r= I

+ n(CII - CI c)[k4P~ (k4~)!( - P4(k4()/(j} cos(mnO cos(ne)ei"r

3

f rc = (I IR C) L [ki(rm+di+el sj;)P;(ki()] - nr",P4(k4()/(] sin(mnO cos(ne)e"'! (18)
i= 1

frO = (C66 1 RC) ttl 2n[k,P;(k,~)!( - Pr(ki~)(j - k~P~(k4~)+ k4P~(k4 O/(

- nCP4 (k 4()!( } cos(mnO sin(ne)e"OI

where the prime denotes differentiation with respect to x(x = k i() and

{
6 r = 0",-/C44_ fr~ = T,..:,"'('44' fro = T rl-l,/C44

PJx) = ArJn(x)+DYn(x). (i = 1.2,3,4).

3. COUPLIl"G EFFECT OF FLUID Al"D SHELL

The basic equation of compressible fluid in cylindrical coordinates is known as

where.

(19)

(20)

Cr is the sound velocity in fluid. <I>(r, e,::, t) is the velocity potential which can be expanded
in the following terms:

<I>(r, 0,::. t) = <I>(r) cos(mn~) cos(ne)e"'>!

Substituting (21) into (20) gives

(21 )

(22)

Take account of the finite value condition of <I> at r = O. the solution of eqn (22) is
taken in the following form:

(23)

for ./ > 0 where / = nc
I d - r~, while for ./ < 0 I n ( • ) should be replaced with I n ( • ), the

modified Bessel function of the first kind. in eqn (23) and hereafter, Co = Cr!V2' D is an
arbitrary constant.

From the Bernoulli equation, the dynamic pressure and the velocity of fluid can be
obtained as follows:



2030 Hao-Jlang Ding 1'1 al.

D d
1'* = -' --[J (-'~")] cos(nm") cos(nli)c""1

t R d~ /l 1'-: ~

(24)

(25)

where Pr is the fluid density and Po = Pr! p. Neglect the effects of viscous and static pressure
of fluid. the boundary conditions at the interaction surface are

e,_ ~ - Pr : f,_" = f,_, = 0 : 1', = 1'~.

It is known that 1', = ('Ure£. thus from eqn (23)-(25). we can obtain

where

(26)

(27)

(28)

4. FREQCEl\ICY EQCATIOl\l

Suppose that the electric potential be zero at the inner and outer surfaces. Considering
the boundary condition expressions derived in the previous section

{~r : :n~P_oH~~'~)~r: f,iI = f, = 0 = q> (~:~": 1- t l 2) (29)
(J,--',o-T,,-O-q> (~-'oh-l+tI2).

It is noticed that boundary conditions of empty shells can be derived by setting Po = 0 in
eqn (29).

The frequency equation can be derived by substituting eqn (18) and the expression of
q> in eqn (17) into (29) as follows

where

1£,//1 = 0 (x. {3 = L 2.... 8)

+ [C 12/1
2 !~,~ + r",(cI,d, +e! I/') ]J" (k ,~,J - Q( ~,,)k,J;,(k ,U

£17 = n(c II - cd[k4J;,(k4S")~,, - J,,(k4¢,,)!~~] + Q(UnJ"(k4U!~,,

£212,-11 = k/(r",+d,+e I5fV;t(k,s,J

£27 = -nr"J,,(k4U (j = 1.2.3)

£'(2, II = 2n[k/;,(k,U/¢" -J,,(kIUs,~]

£!7 = -kU;;(k4U +k4J;,(k4s,J~" _/12 J,,(k4~,,)S'~

£412, I, =t;Jn(k,~a) £47 = 0

(30)

(31 )

where, only the (2j - I )th column (j = 1,2,3.4) of the first four rows of matrix [£,/1] are
presented. The elements of 2jth column (j = 1,2,3,4) can be obtained by changing the
Bessel functions of the first kind in the (2j - 1)th column into the Bessel functions of the
second kind. and the elements of (i +4)th row (i = 1.2,3,4) can be obtained by replacing
~a in the ith row with ~h' And
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{P
02 H("c) .,

Q(
~' 0 ,_,
C) =- 0

(32)

5. NUMERICAL RESCLTS Al'.D DISCUSSIONS

The piezoelectric material PZT4 is to be considered in the following calculations, and
the fluid considered here is water. The relative non-dimensional parameters are

(11=5.4297 (12=3.0391 (1,=2.9023 (n=4.4922

1',1 = -0.3444 I'IS = 0.8411 k~; = 1.3787 k;, = 1.5848

Po = {~.1333
Co = 0.9874

for empty shells

for fluid-filled shells

Example I : free l'ibrations ojpicoelectric cylindrical shells l\'ith 553 edge conditions
Figure I displays curves of the lowest non-dimensional natural frequency 0 vs the

thickness-to-mean radius ratio t I for two values of non-dimensional wave number r m = 1.0
and rm = 2.0 in both cases of empty and fluid-filled piezoelectric cylindrical shell, where
solid lines corresponding to the empty case while dotted lines corresponding to the fluid­
filled case. It is seen that the smaller t I is, the stronger the effect of compressible fluid on 0
is and it decreases with the increase of t I' For flexural vibrations (n = L 2), the effect of
compressible fluid on 0 is certainly small when t l is very big. This phenomenon is similar
to that of transversely isotropic cylindrical shells [Jain (1974)]. However, great difference
exists between them, i.e. the effect of compressible fluid on the axisymmetric vibration
(n = 0, it is also known as the breathing mode) is significant and does not decrease greatly
with the increase of t l • This is the special phenomenon occupied by the piezoelectric
cylindrical shells and has not been reported before. It is therefore suggested that the effect
of fluid on the breathing mode, due to the particular mechanical--electrical coupling effect
of the piezoelectric media, should be the most significant.

Figure 2 displays curves of non-dimensional frequency 0 vs non-dimensional wave
number rm for two values ofthickness-to-mean radius ratio t l = 0.5 and t] = 1.0. It is shown
that the frequency 0 increases with the increase of rm' For flexural vibrations (n = 1,2), the
effect of compressible fluid is always small. It is somewhat different for the axisymmetric
case (n = 0), i.e. there exists a critical wave number (r~ ~ 1.20), when rm < r,~" the effect
increases with the increase of 0 while it decreases when rm > r:,. This is another special
phenomenon occupied by the piezoelectric cylindrical shells. It is also due to the particular
mechanical--electrical coupling effect of the piezoelectric media.

Example 2 :free l'ibrations olempty infinite pie::oelectric cvlindrical shells
Replacing the terms sin(nnrOei<U' and cos(m7I~)e"'"in eqn (5) with e,(ie-wl) and processing

the same derivation as in Section 2. one can obtain the same determinant equation as eqn
(11), but it should be noticed that rm is defined as rm= icR by now. Considering the
same boundary conditions as expression (29). the frequency equation of infinite empty
piezoelectric cylindrical shells with traction-free surfaces can be obtained. Here the detail
derivations are not presented for brevity.

After substituting material constants listed above into eqn (11), it can be seen that
O/rm = 0.85116 is a branch point of eqn (II). i.e. k~ and k~ are conjugate complexes in the
solving zone O/rm < 0.85116, while they are real numbers in O/rm~ 0.85116. In addition,
o = 1.0rm and 2.4662rm are spurious frequencies which should be neglected in the cal­
culations because zero roots exist at these points. The present results and some results
published by Paul and Venkatesan (1987) are listed in Table 1.

In Table I, data in parentheses are cited from Paul and Venkatesan (1987) and data
prefixed with * are frequencies obtained by the present method but were not reported by
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Fig. I. Curves of non-dimensional frequency vs thickness-to-mean radius ratio.

Paul and Venkatesan (1987). ,,( ... )" denotes where they missed the lowest frequencies. It
is noticed that all the missed frequencies belong to the solving zone arm < 0.85116, that is
to say, the lowest frequencies in case of k; (i = 1,2) being conjugate complexes were missed
by Paul and Venkatesan (1987). In fact, only two cases, k; > Oandk; < 0, were computed
for frequencies in their paper.

It is seen from Table I that present results agree with the results presented in Paul
and Venkatesan (1987) quite well except for the missed frequencies. In addition, when
n = 2,rm = 2.0, we do not find a lowest frequency close to the value 1.74713 which was
presented by Paul and Venkatesan (1987) during our calculations. By repeating the cal­
culations in accordance with their formulae, we can only obtain the value 1.90402, which
is also the result of present method.

6. C01'iCLUSIO~S

(1) In the present paper, the frequency equation of piezoelectric cylindrical shells with
SS3 edge conditions is derived based on the three-dimensional theory, including the effect
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Fig. 2. Curves of non-dimensional frequency vs non-dimensional wave number.
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of the filled compressible fluid. Results are presented to investigate the effects of wave
number and thickness of cylindrical shell on the smallest frequency.

(2) Similar phenomenon exists for the effect of inner compressible fluid on flexural
vibrations between piezoelectric and transversely isotropic cylindrical shell, but there is a
great difference between them for the axisymmetric free vibrations. The compressible fluid
has a significant effect on the smallest frequency of piezoelectric cylindrical shells for
axisymmetric vibrations and it does not decrease greatly with 11 increasing.

(3) The effect of compressible fluid on the axisymmetric free vibrations of piezoelectric
cylindrical shell does not increase simply with the increase of the non-dimensional wave
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Table I. Free vibration frequencies Q of Infinite piezoelectric cylindrical shells
(I, = 10)

r" 11=0 n= I n = 2 n = 3
- - ---------------

0.0] *0.0 1582 *O.OOllI3
2.21764 1.00478 I.ll96 I I 2.29474

( ) I ) ( 1.09614) (2.29463)
(2217221 ( 1002621

1.00 *0.69679
1.43728 1.74936 1.29820 2.32647

(1.42886 ) ( ) ( 1.3(666) (2.29478)
( 1.74682)

2.00 *1.65614
207361 2.)5572 1.90402 2.84573

(205896) ( . ) ( 1.74713)' (289942)
(2.32415 )

3.00 2.79204 2.62435 2.78390 2.67739
(2.77349) (2.67795) 12759(2) (2.69625)

number. There actually exists a critical wave number r,~,( ~ 1.20), i.e. when rill < r~, the
effect increases with the increase of Q while decreases when rill > r~"

(4) The method proposed here obviously prevails in dealing with the free vibration
problem of piezoelectric cylindrical shells by using the Bessel functions ofcomplex argument
directly and results show that it is more rational. The method can be generalized and
applied to the analysis of free vibration ofother cases like orthotropic cylinders or cylindrical
shells and can be used to check the accuracy of various shell theories.
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